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Well-defined set of exponents for a pair contact process with diffusion
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Recently it was suggested that a pair contact process with diffusion~PCPD! might represent an independent
new universality class different from the directed percolation~DP! and the parity conservation~PC! class. The
dynamics in the PCPD are usually controlled by two independent parameters. The critical exponents for the
PCPD are known to have different values for varying values of the two independent parameters. However,
once the diffusion and annihilation~or coagulation! rate in the PCPD is tuned in a way that the process without
offspring production is exactly solvable, a well-defined set of the exponents for the PCPD is obtained. Then
dynamics are controlled by only one independent parameter. The obtained critical exponents are different than
those of DP and PC. The critical exponents satisfy the generalized hyperscaling relation within numerical
errors.
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Nonequilibrium phase transitions from active~fluctuating!
into inactive~absorbing! states have been studied extensiv
for the last twenty years@1–3#. These phase transitions int
absorbing states are characterized by nonequilibrium crit
behavior similar to that of an equilibrium phase transition
many respects. One usually uses the concept of scale in
ance to understand nonequilibrium phase transitions as in
case of equilibrium phase transitions. One can obtain var
critical exponents characterizing a certain nonequilibri
phase transition from the concept. These exponents allow
to categorize different nonequilibrium phase transitions i
different universality classes. It is generally believed th
nonequilibrium phase transitions into absorbing states ca
categorized into a finite number of universality classes.

In reaction-diffusion processes exhibiting an absorb
phase transition, the stationary particle densityrs depends on
a particle creation and annihilation rate. If the particle c
ation ratep is larger than a certain critical valuepc , rs has a
nonzero constant value, but ifp,pc , rs is zero. The order
parameterrs vanishes algebraically asrs;(p2pc)

b close to
the critical point. Nonequilibrium phase transitions are oft
characterized by a spatial and temporal correlation len
The spatial and temporal correlation lengths diverge asj'

;(p2pc)
2n' and j i;(p2pc)

2n i close to the transition
point. These two correlation length scales are related bj i
;j'

z , where z5n i /n' is called the dynamic exponen
Three critical exponents (b,n' ,n i) are a basic set of the
critical exponents characterizing the universality class o
given reaction-diffusion process.

Among the known classes of absorbing phase transitio
the directed percolation~DP! class@2,3# is the most promi-
nent and robust class. Continuous absorbing phase tra
tions into a unique absorbing state generally fall into the
class. This class is very robust with respect to microsco
dynamic rules. Most absorbing phase transitions into m
absorbing states are also known to fall into the DP cla
However, when there are additional symmetries such as s
metric absorbing states, parity conservation, etc., absor
phase transitions do not fall into the DP class.

The second well-known class is the parity-conserv
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~PC! class@4–6#. The PC class appears mostly in spread
processes with parity-conserving dynamics. The PC clas
represented most prominently by branching-annihilating r
dom walks with an even number of offspring, where t
number of particles is preserved modulo 2. In one dimens
the parity conservation condition allows the particles to
considered as kinks between oppositely oriented dom
@7,8#. From this interpretation, the parity-conserving proce
can be regarded as a directed percolation process with
Z2-symmetric absorbing states@9#.

Apart from these universality classes, there are a f
other possible candidates@10–12#. One of them is a pair
contact process with diffusion~PCPD! @11–16#. Recently it
was proposed that the PCPD might represent a new c
different from classes known until now. From several exte
sive simulations, it was confirmed that the PCPD shows n
scaling properties@13,14#. Interestingly, the parity conserva
tion condition is not relevant in this class. The most imp
tant characteristics of the PCPD is the use of a binary re
tion for spreading, i.e., two particles have to meet at t
adjacent places in order to create a new particle~or par-
ticles!, regardless of whether the parity of the particle nu
ber is conserved or not@16#. Although many studies for the
PCPD have been done for the last few years, the PCPD c
remains mysterious and unclear until now. One of the fact
to make the PCPD class a mysterious one is the scatt
values of the critical exponents@13–16# ~see Table I!. Due to
the scattered values, the question arises whether the P
represents really an independent universality class.

In this paper, we study three different models belonging
the PCPD class. When the dynamics of all the models
controlled by two independent parameters as in the mo
of Refs.@12–15#, the critical exponents for the models hav
different values depending upon the value of independ
parameters. However, interestingly when the diffusion a
annihilation~or coagulation! rate in the PCPD is tuned in
way that the process without offspring production is exac
solvable@3#, then a well-defined set of the exponents for t
PCPD is obtained. In this process, the dynamics in the PC
are controlled by only one independent parameter.
©2002 The American Physical Society06-1
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The original PCPD process introduced by Howard a
Täuber corresponds to the reaction-diffusion scheme@11#

BA↔AB at rate d,

AA→BB at rate p,

AAB→AAA at rate r ,

BAA→AAA at rate r ,

wherer 5(12p)(12d)/2. The diffusion constantd and the
pair annihilation ratep are independent parameters. The cr
cal point pc for the absorbing phase transition in the PCP
has a different value for eachd whend is changed from 0 to
1. Then, the critical exponents characterizing the absorb
transition have different values for differentpc’s @14#.

Let us modify the dynamic rule of the original PCPD
order to control the diffusion and the pair annihilation rate
only a single independent parameterp. The modified model
is defined on a one-dimensional lattice withL sites and pe-
riodic boundary conditions, where local variablessi50,1 in-
dicate whether a sitei is empty or occupied by a particle. Th
model evolves by random-sequential updates accordin
the following dynamic rules. For each update, a sitei is
randomly selected and a random numberz between 0 and 1
is drawn from a flat distribution. Ifp,z and a sitei is oc-
cupied by a particle, the particle at the sitei hops randomly
to the left ~site i 21) or to the right~site i 11). If the se-
lected target site is already occupied, both particles at
site annihilate instantaneously. Ifp.z and the two sitesi and
i 11 are occupied, this pair of particles generates one
spring to the left or right with equal probability. If the gen
erated particle lands on an already occupied site, both
ticles at that site annihilate instantaneously. As usualL
update attempts correspond to a time increment of 1.
dynamic rules given above can also be defined in term
the reaction-diffusion scheme~model A!

BA↔AB at ratep/2,

AA→BB at rate p,

AAB↔AAA at rate q/2,

BAA↔AAA at rate q/2,

TABLE I. Estimates of the critical exponents for directed pe
colation, the parity-conserving class, the pair contact process
diffusion, and present models~models A, B, and C!.

Class b n' n i

DP 0.2765 1.0969 1.734
PC 0.92~2! 1.83~3! 3.22~6!

PCPD ,0.6 1.0•••1.2 1.8•••2.1
model A 0.519~24! 1.20~9! 2.15~5!

model B 0.496~22! 1.16~6! 2.05~5!

model C 0.50~5! 1.17~7! 2.1~1!
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AAA↔AAB at rate q/2,

AAA↔BAA at rate q/2,

whereq512p.
We carried out computer simulations of the modifi

model. We measured the density of particlesr(t)
5(1/L)( isi(t), initially starting with a fully occupied lat-
tice. We found that the density decays algebraically at
critical point pc50.03081(4) following the formular(t)
;t2d @see Fig. 1~a!#. We found the decay exponent atpc,

d5b/n i50.241~5!. ~1!

We performed finite size simulations at the critical po
to obtain the dynamic exponentz5n i /n' . Then the density
of particles should obey the following finite-size scalin
form:

r~ t,L !;t2d f ~ t/Lz!, ~2!

wheref is a universal scaling function. Usingd50.241, the
best collapse is obtained forz51.80(10)@Fig. 2~a!#. We can
also determine the third independent exponentn i from the
behavior of the density below and above criticality. The de
sity of particles follows the scaling form

r~ t,e!;t2dg~ ten i!, ~3!

th

FIG. 1. ~a! The figure for model A: the density of particlesr(t)
times t0.241 as a function of time for p50.03073,
0.03077, 0.03081, 0.03085, and 0.03089 from top to bottom, a
aged over 1000 runs on a system with 2048 sizes.~b! The figure for
model B: the density of particlesr(t) times t0.242 as a function of
time for p50.28725, 0.28730, 0.28735, 0.28740, and 0.28745 fr
top to bottom, averaged over 1000 runs on a system with 4
sizes.
6-2
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where e5up2pcu denotes the distance from the critic
point. By usingd50.241, the best collapse is obtained f
n i52.15(5) @Fig. 2~b!#.

Therefore, we arrive at the result

b50.519~24!, n'51.20~9!, n i52.15~5!. ~4!

We did dynamic simulations starting with a seed of a sin
pair of particles located on the center. We measured the
vival probability P(t) that the system has not yet reached
absorbing state, the average number of particlesN(t), and
the mean square spreading from the originR2(t) averaged
over the survival runs. At criticality these quantities shou
obey the power lawsP(t);t2d8, N(t);th, and R2(t)
;t2/z, whered8 and h are dynamical exponents. Howeve
we found that it is very difficult to get good estimates for t
critical exponents due to strong corrections to scaling.
found the values by fitting straight lines over the last dec
@Fig. 4~a!#,

d850.11~3!, h50.15~3!, 2/z51.04~10!. ~5!

We note that these estimates are compatible with the ge
alized hyperscaling relation@17#

d8/z5h1d1d8 ~6!

within numerical errors. Hered8 is the spatial dimension.
Next, we considered another model, where the only

ference from the first model is that the pair annihilation p
cess 2A→0 is replaced by the coagulation process 2A→A
in the second model. The reaction-diffusion scheme of
model ~model B! is

BA↔AB at rate p/2,

AA→BA at rate p/2,

AA→AB at rate p/2,

AAB↔AAA at rate q/2,

BAA↔AAA at rate q/2,

FIG. 2. The figure for model A.~a! Finite-size data collapse
according to Eq.~2! for system sizesL5180, 256, 300, and 356
averaged over 20 000 runs.~b! Data collapse for off-critical simu-
lations according to the scaling form ~3! for e
50.00001, 0.00002, . . . , 0.00128 averaged over 1000 runs.
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whereq512p. We did computer simulations of this mode
We found that the critical point ispc50.28735(5)@see Fig.
1~b!#. We found the decay exponent atpc,

d5b/n i50.242~5!. ~7!

We also performed finite size simulations at the critical po
to obtain the dynamic exponentz5n i /n' . From the scaling
form of the density of particlesr(t,L);t2d f (t/Lz), the best
collapse is obtained forz51.78(5) by usingd50.242@Fig.
3~a!#. We also obtainedn i52.05(5) from the behavior of the
density below and above criticality of the density of particl
@Fig. 3~b!#. Therefore, we arrive at the result in the seco
model

b50.496~22!, n'51.16~6!, n i52.05~5!. ~8!

From the seed simulations, we obtained additional expon
@Fig. 4~b!#

d850.13~3!, h50.15~3!, 2/z51.07~6!. ~9!

In this process, the generalized hyperscaling relation is a
satisfied within numerical errors.

Another known model~model C! belonging to the PCPD
class in addition to the first and second model is the bin
spreading process with parity conservation

BA↔AB at rate p/2,

AA→BB at rate p,

AABB↔AAAA at rate q/2,

BBAA↔AAAA at rate q/2,

AAAB↔AABA at rate q/2,

BAAA↔ABAA at rate q/2,

whereq512p. The model was studied recently@16#. The
values of the exponents obtained from the initially fully o
cupied lattice are

d50.236~10!, z51.80~5!, n i52.1~1!. ~10!

FIG. 3. The figure for model B.~a! Finite-size data collapse
according to Eq.~2! for system sizesL564, 90, 128, 180, and 256
averaged over 50 000 runs.~b! Data collapse for off-critical simu-
lations according to the scaling form~3! for e50.00001, 0.00002,
. . . , 0.00128 averaged over 1000 runs.
6-3
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Therefore,

b50.50~5!, n'51.17~7!, n i52.1~1!. ~11!

The values of the exponents from the seed simulations a

d8'0.10, h'0.20, 2/z'1.15, ~12!

without being able to estimate the errors.
The values of the critical exponents obtained from

three models are the same within the statistical errors.
critical exponents are different from those of DP and PC~see
Table I!. When the particle creation rate is zero in the thr

FIG. 4. The survival probabilityP(t), the average number o
particlesN(t), and the mean square spreadingR2(t) starting with a
single pair of particles for model A~a! and model B~b!.
s
e,

,
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models, the total rate for coagulation or annihilation in tho
models is always twice the diffusion rate. Then the mod
can be solved exactly and show the same scaling beha
i.e., r(t);t21/2 in one dimension@3#. When p.pc in the
three models we studied, the density of a particle dec
algebraically in the long time limit according tor(t)
;t21/2.

We studied the three models when the rate of coagula
and annihilation is three times the diffusion rate. We a
found that the three models give almost the same expon
as we obtained here. But in the case of model A, it is diffic
to get good estimates for the critical exponents due to str
corrections to scaling.

In conclusion, we have studied three models belonging
the PCPD class. When the dynamics of the models w
controlled by two independent parameters, the critical ex
nents have different values depending upon the value of
rameters. However, when the dynamics were controlled
only one parameter, we found that the critical expone
characterizing the dynamics of all the models have the sa
values within the statistical errors. In these three differ
models for the PCPD, we tuned the two parameters for
fusion and spreading in a particular way, namely, such t
the dynamic rules become particularly simple. In fact, t
total rate for coagulation and annihilation is always twice t
diffusion rate. These models can be solved exactly and s
the same scaling behavior if there is no offspring producti
The simulation results for these models say that once
tunes the diffusion and annihilation~or coagulation! rate in a
way that the process without offspring production is exac
solvable, then one has a well-defined set of the critical ex
nents for the PCPD. Moreover, the values of the critical
ponents are different from those of DP and PC. Therefo
the PCPD does not belong to the DP and PC class.

This work was supported in part by a Korea Resea
Foundation grant~Grant No. KRF-2001-015-DP0120! and
also in part by the Ministry of Education through the BK2
project.
ev.

, J.
@1# J. Marro and R. Dickman,Nonequilibrium Phase Transition
in Lattice Models~Cambridge University Press, Cambridg
1999!.

@2# W. Kinzel, Percolation Structures and Processes, Vol. 5 of
Annals of the Israeli Physical Society, edited by G. Deutscher
R. Zallen, and J. Adler~Adam Hilger, Bristol, 1983!.

@3# H. Hinrichsen, Adv. Phys.49, 815 ~2000!.
@4# H. Takayasu and A.Y. Tretyakov, Phys. Rev. Lett.68, 3060

~1992!.
@5# J. Cardy and U.C. Ta¨uber, Phys. Rev. Lett.77, 4780~1996!.
@6# D. ben-Avraham, F. Leyvraz, and S. Redner, Phys. Rev. E50,

1843 ~1994!.
@7# M.H. Kim and H. Park, Phys. Rev. Lett.73, 2579~1994!; W.

Hwang, S. Kwon, H. Park, and H. Park, Phys. Rev. E57, 6438
~1998!.
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