PHYSICAL REVIEW E 66, 027106 (2002
Well-defined set of exponents for a pair contact process with diffusion
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Recently it was suggested that a pair contact process with diffd8i6RD might represent an independent
new universality class different from the directed percolatidR) and the parity conservatiqiRC) class. The
dynamics in the PCPD are usually controlled by two independent parameters. The critical exponents for the
PCPD are known to have different values for varying values of the two independent parameters. However,
once the diffusion and annihilatiqor coagulationrate in the PCPD is tuned in a way that the process without
offspring production is exactly solvable, a well-defined set of the exponents for the PCPD is obtained. Then
dynamics are controlled by only one independent parameter. The obtained critical exponents are different than
those of DP and PC. The critical exponents satisfy the generalized hyperscaling relation within numerical
errors.
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Nonequilibrium phase transitions from acti(feictuating (PO class[4—6]. The PC class appears mostly in spreading
into inactive(absorbing states have been studied extensivelyprocesses with parity-conserving dynamics. The PC class is
for the last twenty yearl-3]. These phase transitions into represented most prominently by branching-annihilating ran-
absorbing states are characterized by nonequilibrium criticajlom walks with an even number of offspring, where the
behavior similar to that of an equilibrium phase transition in number of partides is preserved modulo 2. In one dimension,
many respects. One usually uses the concept of scale invathe parity conservation condition allows the particles to be
ance to understand nonequilibrium phase transitions as in thénsidered as kinks between oppositely oriented domains
case of equilibrium phase transitions. One can obtain variougy g]. From this interpretation, the parity-conserving process
critical exponents characterizing a certain nonequilibriumcan be regarded as a directed percolation process with two
phase transition from the concept. These exponents allow UB,-symmetric absorbing stat¢g].
to categorize different nonequilibrium phase transitions into ~ Apart from these universality classes, there are a few
different universality classes. It is generally believed thaigther possible candidatdd0—12. One of them is a pair
nonequilibrium phase transitions into absorbing states can b&yntact process with diffusioPCPD [11-16. Recently it
categorized into a finite number of universality classes.  was proposed that the PCPD might represent a new class

In reaction-diffusion processes exhibiting an absorbinggifferent from classes known until now. From several exten-
phase transition, the stationary particle denpifglepends on  sjve simulations, it was confirmed that the PCPD shows new
a particle creation and annihilation rate. If the particle cre-scaling propertie§13,14. Interestingly, the parity conserva-
ation ratep is larger than a certain critical valy®, pshas a  tion condition is not relevant in this class. The most impor-
nonzero constant value, butf<pc, ps is zero. The order tant characteristics of the PCPD is the use of a binary reac-
parameteps vanishes algebraically ag~ (p—p.)” closeto  tion for spreading, i.e., two particles have to meet at two
the critical point. Nonequilibrium phase transitions are oftenadjacent places in order to create a new particle par-
characterized by a spatial and temporal correlation lengthicles), regardless of whether the parity of the particle num-
The spatial and temporal correlation lengths diverg&as ber is conserved or n¢tl6]. Although many studies for the
~(p—pc) ™ and £~(p—p) "l close to the transition PCPD have been done for the last few years, the PCPD class
point. These two correlation length scales are related by remains mysterious and unclear until now. One of the factors
~¢&, where z= v lv, is called the dynamic exponent. to make the PCPD class a mysterious one is the scattered
Three critical exponentsg,v, ,v|) are a basic set of the values of the critical exponenf$3—-14 (see Table)l Due to
critical exponents characterizing the universality class of dhe scattered values, the question arises whether the PCPD
given reaction-diffusion process. represents really an independent universality class.

Among the known classes of absorbing phase transitions, In this paper, we study three different models belonging to
the directed percolatiofDP) class[2,3] is the most promi- the PCPD class. When the dynamics of all the models are
nent and robust class. Continuous absorbing phase transientrolled by two independent parameters as in the models
tions into a unique absorbing state generally fall into the DRof Refs.[12-185, the critical exponents for the models have
class. This class is very robust with respect to microscopidifferent values depending upon the value of independent
dynamic rules. Most absorbing phase transitions into manyparameters. However, interestingly when the diffusion and
absorbing states are also known to fall into the DP classannihilation(or coagulation rate in the PCPD is tuned in a
However, when there are additional symmetries such as synmway that the process without offspring production is exactly
metric absorbing states, parity conservation, etc., absorbingplvable[3], then a well-defined set of the exponents for the
phase transitions do not fall into the DP class. PCPD is obtained. In this process, the dynamics in the PCPD

The second well-known class is the parity-conservingare controlled by only one independent parameter.

1063-651X/2002/6@)/0271064)/$20.00 66 027106-1 ©2002 The American Physical Society



BRIEF REPORTS

PHYSICAL REVIEW B6, 027106 (2002

TABLE I. Estimates of the critical exponents for directed per- 0.970
colation, the parity-conserving class, the pair contact process with
diffusion, and present mode{sodels A, B, and € _
S
Class B v, V| So
Q.
DP 0.2765 1.0969 1.734
PC 0.922) 1.833) 3.226) 6787 Lol L
PCPD <0.6 1.0--1.2 1.8--2.1 10 101 102 103 104 105 106
model A 0.51924) 1.209) 2.155) t
model B 0.49622) 1.166) 2.0505)
model C 0.505) 1.177) 2.1(1) L I S B R —
[a\}
The original PCPD process introduced by Howard and S
Tauber corresponds to the reaction-diffusion schéfdg o*a
JA—AYD  atrated,
0.885 I N T
AA-JD  atratep, 10° 10" 10° 10* 10* 10° 10°
t
AAT—AAA atrater,
FIG. 1. (a) The figure for model A: the density of particlgsét)
OAAAAA  atrater times t%?!' as a function of time for p=0.03073,

0.03077, 0.03081, 0.03085, and 0.03089 from top to bottom, aver-
wherer = (1— p)(1—d)/2. The diffusion constard and the aged over 1000 runs on a system with 2048 si@®sThe figure for
pair annihilation rate are independent parameters. The criti- Mode! B: the density of particles(t) timest®**2as a function of
cal pointp, for the absorbing phase transition in the PCPD“me for p=0.28725, 0.28730, 0.28735, 0.28740, and 0.28745 from
has a different value for eachwhend is changed from 0 to top to bottom, averaged over 1000 runs on a system with 4096
1. Then, the critical exponents characterizing the absorbmg 2€s.
transition have different values for differept’s [14].

Let us modify the dynamic rule of the original PCPD in AAA—AAZ  atrate g/2,
order to control the diffusion and the pair annihilation rate by
only a single independent parameperThe modified model AAA—TAA at rate q/2,
is defined on a one-dimensional lattice withsites and pe-
riodic boundary conditions, where local variabgs-0,1in-  whereq=1-p.

dicate whether a siteis empty or occupied by a particle. The  we carried out computer simulations of the modified
model evolves by random-sequential updates according tgodel. We measured the density of particlegt)

the following dynamic rules. For each update, a Sits = (1/L)3;s;(t), initially starting with a fully occupied lat-
randomly selected and a random numbéetween 0 and 1 tice. We found that the density decays algebraically at the
is drawn from a flat distribution. |p<Z and a sitel is oc- critical point pC:003081(4) following the formulap(t)

Cupied by a particle, the partiC|e at the SItbOpS I’andomly ~t75 [See F|g la)] We found the decay exponent WJ!
to the left(sitei—1) or to the right(sitei+1). If the se-

lected target site is already occupied, both particles at that
site annihilate instantaneously.df>z and the two sitesand
i+1 are occupied, this pair of particles generates one off-
spring to the left or right with equal probability. If the gen-
'ﬁé?égdart)atrr?;'l[eslﬁc‘gdin(r)]?m?:teal:r?;i)(wtg(r:ggﬂgg Sgi Sgﬂlp ?f particles should obey the following finite-size scaling
orm:
update attempts correspond to a time increment of 1. The
dynamic rules given above can also be defined in terms of
the reaction-diffusion schem@nodel A

5= PBlv=0.2415). (1)

We performed finite size simulations at the critical point
to obtain the dynamic exponert=v|/v, . Then the density

p(t,L)~t~%f(t/L?), 2

JA—AY  atratep/2, wheref is a universal scaling function. Using= 0.241, the
best collapse is obtained far=1.80(10)[Fig. 2(@)]. We can
AA—-TD atrate p, also determine the third independent expongnfrom the
behavior of the density below and above criticality. The den-
AAD — AAA at rate q/2, sity of particles follows the scaling form
JAA—AAA  atrate g/2, p(t,e)~t~%g(te"), ©)
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FIG. 2. The figure for model A(a) Finite-size data collapse

FIG. 3. The figure for model B(a) Finite-size data collapse

according to Eq(2) for system sized =180, 256, 300, and 356
averaged over 20 000 rung) Data collapse for off-critical simu-
lations according to the scaling form(3) for e
=0.00001, 0.000Q2 . ., 0.00128 averaged over 1000 runs.

according to Eq(2) for system sizet =64, 90, 128, 180, and 256
averaged over 50 000 runi) Data collapse for off-critical simu-
lations according to the scaling for(8) for e=0.00001, 0.00002,
..., 0.00128 averaged over 1000 runs.

where e=|p—p.| denotes the distance from the critical whereq=1-p. We did computer simulations of this model.
point. By using5=0.241, the best collapse is obtained for We found that the critical point ip.=0.28735(5)[see Fig.
v =2.15(5) [Fig. 2b)]. 1(b)]. We found the decay exponent @&,
Therefore, we arrive at the result
o= Blv|=0.2425). (7)

B=051924), v, =1209), »=2.155). (4

We also performed finite size simulations at the critical point
We did dynamic simulations starting with a seed of a singll© obtain the dynamic exponent v /v, . 5Fromzthe scaling
pair of particles located on the center. We measured the suform of the density of particles(t,L)~t~°f(t/L?), the best
vival probability P(t) that the system has not yet reached ancollapse is obtained far=1.78(5) by usings=0.242[Fig.
over the survival runs. At criticality these quantities should[Fig. 3b)]. Therefore, we arrive at the result in the second
obey the power lawsP(t)~t~ %, N(t)~t”, and Ry(t)  mModel

~12% where ' and 5 are dynamical exponents. However,
we found that it is very difficult to get good estimates for the
critical exponents due to strong corrections to scaling. Weé=rom the seed simulations, we obtained additional exponents
found the values by fitting straight lines over the last decad¢Fig. 4(b)]

[Fig. 4@,
5'=0.11(3),

B=0.49622), v, =1.166), »=2.055). (8

6'=0.133), 7=0.153), 2/z=1.0716). (9
7n=0.143), . . . o
In this process, the generalized hyperscaling relation is also
We note that these estimates are compatible with the genesatisfied within numerical errors.
alized hyperscaling relatiofl7] Another known mode{(model Q belonging to the PCPD

class in addition to the first and second model is the binary

2/z=1.0410). (5)

d'/z=n+ 6+ 6 (6)  spreading process with parity conservation
within numerical errors. Herd' is the spatial dimension. JA—AY  atrate p/2,
Next, we considered another model, where the only dif-
ference from the first model is that the pair annihilation pro- AA—  atratep,
cess 2A—0 is replaced by the coagulation procegs2A
in the second model. The reaction-diffusion scheme of this AAID—AAAA  atrate q/2,
model (model B is
TTAA—~AAAA  atrate /2,
TA—AD at rate p/2,
AAAD—AAJA  atrate q/2,
AA A at rate p/2,
—9 P JAAA—ATAA  atrate g/2,
AA—AD atrate p/2, whereq=1—p. The model was studied recen{l{6]. The
values of the exponents obtained from the initially fully oc-
AAT —AAA at rate g/2, cupied lattice are
TAA—AAA  atrate g/2, §=0.23610), z=1.805), y=2.11). (10
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FIG. 4. The survival probabilityP(t), the average number of
particlesN(t), and the mean square spreadRf{t) starting with a
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single pair of particles for model £4a) and model B(b).
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models, the total rate for coagulation or annihilation in those
models is always twice the diffusion rate. Then the models
can be solved exactly and show the same scaling behavior,
i.e., p(t)~t~ Y2 in one dimensior{3]. When p>p. in the
three models we studied, the density of a particle decays
algebraically in the long time limit according t@(t)
Ntfllz_

We studied the three models when the rate of coagulation
and annihilation is three times the diffusion rate. We also
found that the three models give almost the same exponents
as we obtained here. But in the case of model A, it is difficult
to get good estimates for the critical exponents due to strong
corrections to scaling.

In conclusion, we have studied three models belonging to
the PCPD class. When the dynamics of the models were
controlled by two independent parameters, the critical expo-
nents have different values depending upon the value of pa-
rameters. However, when the dynamics were controlled by
only one parameter, we found that the critical exponents
characterizing the dynamics of all the models have the same
values within the statistical errors. In these three different
models for the PCPD, we tuned the two parameters for dif-
fusion and spreading in a particular way, namely, such that
the dynamic rules become particularly simple. In fact, the
total rate for coagulation and annihilation is always twice the
diffusion rate. These models can be solved exactly and show

Therefore, the same scaling behavior if there is no offspring production.
The simulation results for these models say that once one
B=0.505), v, =1177), v=21(1). (1D  tynes the diffusion and annihilatidor coagulatiohrate in a

The values of the exponents from the seed simulations are

6'~0.10, %~0.20,

2r~1.15,

without being able to estimate the errors.

12

way that the process without offspring production is exactly
solvable, then one has a well-defined set of the critical expo-
nents for the PCPD. Moreover, the values of the critical ex-
ponents are different from those of DP and PC. Therefore,
the PCPD does not belong to the DP and PC class.

The values of the critical exponents obtained from the This work was supported in part by a Korea Research
three models are the same within the statistical errors. ThEoundation gran{Grant No. KRF-2001-015-DP012@&nd
critical exponents are different from those of DP and(B€  also in part by the Ministry of Education through the BK21
Table ). When the particle creation rate is zero in the threeproject.
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